# Program Plan # **Building a Sustained Ocean Observing System for Climate** Office of Climate Observation Michael Johnson Updated: March 2006 # **Overall Summary** The mission of the Office of Climate Observation is to build and sustain a global climate observing system that will respond to the long term observational requirements of the operational forecast centers, international research programs, and major scientific assessments. Although the U.S. Climate Change Science Program (CCSP) has identified the critical need for the federal government to deliver regular reports documenting the state of Earth's climate, an observing system does not presently exist that is capable of accurately documenting climate variability and change. Through this program plan NOAA will develop the infrastructure necessary to build, with national and international partners, the ocean component of a global climate observing system and to deliver regular reports on the adequacy of the system in documenting the ocean's contribution to climate. # 1.0 Base Program 1.1 Key activities currently carried out by NOAA for this strategy area: Over the past decade NOAA has worked with national and international partners to begin building a sustained global ocean system for climate, focusing first on the tropical Pacific, and expanding to the Atlantic and the Indian Oceans. It is now well understood that documenting and forecasting climate will require continuous measurements from space along with the instrumenting of the entire global ocean. The present international effort is about 55% of what will ultimately be needed for the global system. NOAA presently maintains approximately 50% of the *in situ* networks and 30% of the space components and is committed to the goal of providing at least 50% of the composite system over the long term. The existing foundation is comprised of twelve complementary *in situ*, space based, data and assimilation subsystems: 1) Global Tide Gauge Network; 2) Global Surface Drifting Buoy Array; 3) Global Ships of Opportunity Network; 4) Tropical Moored Buoy Network; 5) Argo Profiling Float Array; 6) Ocean Reference Stations; 7) Ocean Carbon Monitoring Network; 8) International Arctic Ocean Observing System; 9) Dedicated Ship Operations; 10) Satellites for Sea Surface Temperature, Sea Surface Height, Surface Vector Winds, Sea Ice, and Ocean Color; 11) Data and Assimilation Subsystems, and 12) System Management and Product Delivery. The system design is illustrated in Figure 1. This is an international effort. The system illustrated in Figure 1 represents the common goals and objectives of the international Global Climate Observing System (GCOS), the Global Ocean Observing System (GOOS), the Joint WMO/IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM), the Global Earth Observation System of Systems (GEOSS), the U.S. Integrated Ocean Observing System Global Component (IOOS), and well as NOAA. The plan is being advanced by NOAA via matrix management within the Climate Goal. Implementation of the in situ networks is through distributed centers of expertise at the NOAA Research labora- Figure 1. tories, the National Ocean Service Center for Operational Oceanographic Products and Services, the National Data Buoy Center, and the university laboratories that have developed the instruments and techniques. The space and data components are centered in the NOAA Environmental Satellite, Data and Information Service. The space components are being advanced via other NOAA program planning; they are described here because of their central role in global observation but they are not detailed in this plan. The focal point for developing global ocean data assimilation capabilities is the Geophysical Fluid Dynamics Laboratory in partnership with the National Centers for Environmental Prediction and university-based applied research centers. The system management functions are focused in the Office of Climate Observation. # 1.2 Budget and funding history for each of the major activities (\$K) | Network | FY 02 | FY 03 | FY 04 | FY 05 | FY 06 | |---------------------------------------------|-------|-------|-------|-------|-------| | | | | | | | | Tide Gauge Stations | 670 | 710 | 970 | 1196 | 1177 | | Drifting Buoys | 1699 | 2077 | 2769 | 3130 | 3427 | | Tropical Moored Buoys | 3175 | 3175 | 3625 | 4360 | 3094 | | Ships of Opportunity | 1960 | 1903 | 2487 | 2907 | 2776 | | Argo Profiling Floats | 271 | 275 | 273 | 249 | 247 | | Ocean Reference Stations | 1712 | 2082 | 2998 | 2995 | 3958 | | Ocean Carbon Networks | 1478 | 2204 | 2875 | 3521 | 3482 | | International Arctic Ocean Observing System | 337 | 337 | 337 | 397 | 310 | | Dedicated Ship Time | 0 | 626 | 523 | 92 | 542 | | Data & Assimilation Subsystems | 1286 | 1323 | 1487 | 1418 | 1331 | | Service Argos Data Processing | 813 | 480 | 1525 | 1408 | 448 | | Product Deliver, Analysis/Reanalysis | 578 | 638 | 896 | 1982 | 2048 | | Institutional Infrastructure | 626 | 653 | 1269 | 1356 | 711 | | IOOS Global Systems Total (OCO managed) | 14605 | 16483 | 22034 | 25011 | 23551 | | | | | | | | | Argo Program | 6978 | 9706 | 9811 | 9491 | 9758 | | Arctic Program | 1600 | 4322 | 3651 | 4928 | 4927 | | TAO/PIRATA, NWS operations | 0 | 0 | 0 | 0 | 3200 | # 2.0 Statement of Need The Second Report on the Adequacy of the Global Observing System for Climate in Support of the UNFCCC concludes "there has been progress and improvement in the implementation of global cli- mate observing systems since the first report, especially in the use of satellite information and in the provision of some ocean observations. At the same time, the Report notes that the global terrestrial networks remain to be fully implemented; the ocean networks lack global coverage and commitment to sustained operations; and the atmospheric networks are not operating with the required global coverage and quality. The Report concludes, in agreement with the IPCC, that there remain serious deficiencies in the ability of the current global observing systems for climate to meet the observational needs of the UNFCCC. ... Without urgent action to address these findings, the Parties will lack the information necessary to effectively plan for and manage their response to climate change." The Report goes on to note "new technology developed and proven by the ocean climate programs of the 1990s has allowed the ocean community to design and commence implementation of an initial ocean climate observing system that is well focused on the UNFCCC needs. The first priority is the full implementation of this system together with its associated data, analysis and product capabilities." In response to the Adequacy Report, the international community published the GCOS *Implementation Plan for the Global Observing System for Climate in support of the UNFCCC* (GCOS-92) in October 2004. This implementation plan details the actions needed to achieve global coverage by the ocean networks. The system put in place for climate will also support global weather prediction, global and coastal ocean prediction, marine hazard warning, marine environmental monitoring, and many other non-climate users. This program plan is founded on the international design noted in GCOS-92; it is illustrated in Figure 1. Other requirement drivers include the CCSP Strategic Plan expressing need for "complete global coverage of the oceans with moored, drifting, and ship-based networks," and the US National Oceanographic Partnership Program's *First U.S. Integrated Ocean Observing System (IOOS) Development Plan* which lists as a primary objective: "Continue implementing the global ocean-climate component of the IOOS (important for addressing the goals of climate change, maritime operations, and natural hazards)." NOAA's contribution to global implementation is represented in the program budget and the progress to date is illustrated in Figure 2. Implementation of this program plan will demonstrate to the world community that the United States is intent on taking immediate action to address the Second Adequacy Report findings, is willing to play a leadership role in achieving global coverage of the ocean networks, and is committed to sustained operations. - **2.1 Program requirements to be met:** The NOAA Climate Goal is organized into five Programs: 1) Climate Observations and Analysis; 2) Climate Predictions and Projections; 3) Climate Forcing; 4) Climate and Ecosystems; and (5 Regional Decision Support. This plan describes the "ocean subcapability" of the Climate Observations and Analysis Program. - **2.2 Input from NOAA leadership related to this strategy:** This program plan addresses NOAA's Strategic Plan, Climate Strategies, and the Annual Guidance Memorandum. In particular: - Strategic Plan: Describe and understand the state of the climate system through integrated observations, analysis, and data stewardship. - Climate Strategies: Improve the quality and quantity of climate observations, analysis, interpretation, and archiving by maintaining a consistent climate record and by improving our ability to determine why changes are taking place. - Annual Guidance Memorandum: The Integrated Ocean Observing System (IOOS) must be developed as a major component of the U.S. contribution to the Global Earth Observation System of Systems (GEOSS). - **2.3 External constituent input related to the strategy area:** In 2001 the U.S. GOOS Steering Committee conducted a formal review of the 2001 version of this program plan. The review panel Figure 2. included international representatives of the IOC, IGOS, CLIVAR, WOCE, OOPC, GODAE, and JCOMM as well as partner agencies within the United States – NASA and NAVOCEANO. The seven summary recommendations of the review are paraphrased below. - 1. Strong overall support for the plan. U.S. GOOS urged NOAA to implement the plan with the following additional recommendations: - 2. The need for a management plan An effort of the proposed magnitude must be integrated, organized, and managed as a system in order to be effective. The management plan should define an orderly decision making process with management accountability that is understood by other agencies and by customers. A single NOAA point of responsibility and authority is very desirable. Sections 7.0–7.8 achieve this recommendation. - 3. The need for a data and information management budget. Section 6.12 achieves this recommendation. - 4. The need for improved ocean products evaluation and delivery. Sections 7.0-7.8 achieve this recommendation. - 5. The need for transition to operations of precision altimetry. Section 6.11 achieves this recommendation. - 6. The need for ocean carbon monitoring to be better defined. Section 6.8 achieves this recommendation. - 7. The need to deal with dedicated ship time issues. Section 6.10 achieves this recommendation. **2.4 Relevant Congressional input or guidance related to the strategy area:** The FY03 Senate Committee on Appropriations Report "reaffirms its support for the establishment of an integrated, interagency ocean and coastal observing system ... and requests the submission of a plan to implement such a system." The National Oceanographic Partnership Program's Ocean.US office responded to this Congressional request on behalf of the contributing agencies by publishing in 2005 the *First U.S. Integrated Ocean Observing System (IOOS) Development Plan*. The observation system detailed in this program plan forms the nucleus of the Global Component of the U.S. Integrated Ocean Observing System. #### 3.0 Program Initiative - **3.1 Overall strategy for addressing deficiencies outlined in the Statement of Need Section.** The strategic approach underlying this program plan is as follows: - Build the long-term ocean component of the observing system in the context of a comprehensive, multi-year, climate program. Improved marine and coastal forecast services will be immediate byproducts. - Set an initial 2000-2010 timeline for phased implementation (the time line has now been extended to 2012 because of budget realities). - Establish accountability by defining specific objectives and performance measures. - Define an "initial observing system design" that will accomplish the objectives and performance measures. Identify annual milestones to complete the initial system over the time line. Emphasize that the initial design is our best guess at this time it must be evolutionary as knowledge and technology advance. - State the obvious a global observing system cannot be built with existing budgets. Estimate the annual funding needed to achieve the identified milestones. Estimate that NOAA will implement about 50% of the global system. - Work with national and international partners to achieve 100% completion. Although NOAA's marine and coastal services and the mission services of the other agencies and nations will benefit from this plan, and are considered throughout, accomplishing NOAA's climate mission is the fundamental driver. The scientific foundations come from the Climate Variability and Predictability program and the Global Carbon Cycle program. The programmatic drivers come from the Climate Observations and Analysis Program, the Climate Predictions and Projections Program, the Climate Forcing Program, and the Climate & Ecosystems Program. It is not the intent of the plan to provide all of the observations needed by these programs but to provide a baseline observing system, to be sustained over the long term, that can be built upon where needed to answer specific questions. This baseline system looks for efficiencies to be gained by utilizing common platforms/sites/data infrastructure for several objectives in parallel, and seeks to foster a system approach to effective international organization of complementary in situ, satellite, data, and modeling components of climate observation. Priorities for implementation are now in place based on the concept of extending the building blocks that have already been put in place, and on the international GCOS Implementation Plan (GCOS-92) which has been specified as the ocean baseline for GEOSS. NOAA will work to implement the specific actions called for in GCOS-92, particularly those actions assigned to the Joint WMO/IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM). JCOMM is NOAA's principal intergovernmental linkage to international implementation. - **3.1.1 NOAA context:** This plan supports NOAA's strategic goal to monitor and observe: "NOAA will invest in needed climate quality observations and encourage other national and international investments to provide a comprehensive observing system in support of climate assessments and forecasts." The plan details how NOAA will achieve one element of that strategic goal implementation of the sustained *in situ* ocean component of the global climate observing system and this plan details how NOAA will implement the Global Component of the NOAA IOOS Major Project. - **3.1.2 Interagency context:** The observational objectives of NOAA's climate program and those of the CCSP are essentially identical and the ocean observing system architecture detailed below will be implemented by NOAA within the framework of, and as an element of, the CCSP. At the same time the observing system must be advanced in support of climate services, it must also be advanced in response to a national demand for the ocean agencies to coordinate implementation of an U.S. contribution to the Global Ocean Observing System. It is recognized that an effective global ocean observing system can be achieved only through continuing interaction among all national (and international) partners. In this context, NOAA will provide a significant contribution to the Global Component of the Integrated Ocean Observing System (IOOS). Implementation will be coordinated with the National Oceanographic Partnership Program agencies. **3.1.3 International context:** The observational component of climate services has by far the greatest opportunity and necessity for international collaboration. A global observing system by definition crosses international boundaries and the potential exists for both benefits and responsibilities to be shared by many nations. The system described below is based on the international design of, and is an U.S. contribution to GCOS-92. The observing system projects that make up the climate component have been developed, and will continued to be evolved, organized and managed, in cooperation with the international implementation panels of the Joint IOC/WMO Technical Commission for Oceanography and Marine Meteorology (JCOMM), and with scientific guidance from the GCOS/GOOS/WCRP Ocean Observations Panel for Climate (OOPC). #### 3.2 Cost and schedule for each investment **3.2.1 Cost Methodology:** Cost estimates are derived by observing platform (buoy, float, shipboard system, tide gauge station, etc.) times the number of platforms maintained per year based on the cost of procuring hardware and software, calibrating sensors, deploying/installing sensors, providing satellite transmission of real time data, quality control and archival of processed data. Due to the harsh environment, most ocean platforms are considered expendables, not capital equipment. Continual purchase of replacement sensors, rebuilding, and reseeding of the arrays are required such that annual maintenance costs in the out years are estimated to be the same as the initial cost of establishing a new platform/system in the first year. For analysis work, the annual cost is mostly intellectual resources (people). The implementation of the global ocean observing system is based on partnerships. On average, NOAA provides about half of the global requirement, with partner agencies in the U.S., primarily NSF, and partner countries (presently 64 other countries) providing the other half. For some systems, e.g., drifting buoys, NOAA provides more than half, and for some systems, e.g., tide gauge stations, NOAA provides less than half. But system-wide, we estimate half. This is based on historical partnerships over the past 10 years. A report of contributions by countries is maintained at <a href="https://www.jcommops.org/network">www.jcommops.org/network</a> status. Accounting within the ocean program is by "project." Each project files an annual report documenting progress of the previous fiscal year and outlining the work plan for the coming fiscal year. A budget sheet(s) is part of each project report and details the costs required to sustain the project – personnel, supplies, travel, contracts, etc. Cost estimates are based on these documented expenditures. The project reports are compiled each year into an *Annual Report on the State of the Ocean and the Ocean Observing System for Climate*. Hard copies of the *Annual Report* are available from <a href="mailto:climate.observation@noaa.gov">climate.observation@noaa.gov</a>. An electronic file is available at <a href="https://www.oco.noaa.gov">www.oco.noaa.gov</a>. **3.2.2 Schedule:** The summary below is based on the Program Baseline Assessment of the 100% requirement. Detailed cost estimates are updated annually in June as part of the Program Baseline Assessment (PBA) and are documented in the PBA Table2. The ocean observing system needs to be completed as soon as possible in order to provide the fundamental measurements needed to deliver credible climate forecasts and assessments. The executable gap is limited, however, by NOAA's ability to implement new system expansions with available management and infrastructure capabilities. The maximum budget increase per year that can be accommodated is estimated to be \$16.8 million. A steady ramp of \$16.8 million increase per year therefore describes the optimum multi-year plan to reach 100% capability. The 100% capability budget is estimated using this optimum multi-year ramp. This summary is based on actually budgets through FY06, the President's budget for FY07, and the executable ramp of \$16.8 million per year through FY12. Summary: | | <u>FY04</u> | <u>FY05</u> | <u>FY06</u> | <u>FY07</u> | <u>FY08</u> | <u>FY09</u> | <u>FY10</u> | <u>FY11</u> | <u>FY12</u> | |-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | System annual | | | | | | | | | | | operating cost (\$ M) | 40.7 | 51.2 | 53.2 | 58.6 | 75.4 | 92.2 | 109.0 | 125.8 | 141.1 | #### 4.0 Program Goal and Objectives - **4.1 Goal**: The goal of this plan is to build and sustain the ocean component of a global climate observing system that will respond to the long-term observational requirements of the operational forecast centers, international research programs, and major scientific assessments. - **4.2 Objectives:** The ocean is the memory of the climate system and is second only to the sun in effecting variability in the seasons and long-term climate change. It is estimated that the ocean stores 1000 times more heat than the atmosphere, and 50 times more carbon. Eighty-seven percent of the rain and snow that water our Earth comes directly from the ocean. Changing sea level is one of the most immediate impacts of climate change. Additionally, the key to possible abrupt climate change may lie in deep ocean circulation. Accordingly, the objectives of the sustained ocean observing system for climate are to: - 1) Document long-term trends in sea level change; - 2) Document ocean carbon sources and sinks; - 3) Document the ocean's storage and global transport of heat and fresh water; and - 4) Document the ocean-atmosphere exchange of heat and fresh water. This implementation plan will provide a composite global ocean observing system of complementary networks that includes: 1) deployment and maintenance of observational platforms and sensors; 2) data delivery and management; and 3) routine delivery of ocean analyses. This end-to-end ocean system will provide the critical "up-front" information needed for climate forecasting, research, and assessments – continuous, long term, climate quality, global data sets and a suite of routinely delivered ocean analyses. At the same time, the system will provide real-time data to serve the needs of NOAA's marine and coastal forecast and warning missions and the needs of the other agencies in accomplishing their missions. #### **5.0 Performance Measures** In order to achieve the four objectives, the system must accurately measure: 1) sea level to identify changes resulting from climate variability; 2) ocean carbon content every ten years and the air-sea exchange seasonally; 3) sea surface temperature and surface circulation to identify significant patterns of climate variability; 4) sea surface pressure and air-sea exchanges of heat, momentum, and fresh water to identify changes in forcing functions driving ocean conditions and atmospheric conditions; 5) ocean heat and fresh water content and transports to identify where anomalies enter the ocean, how they move and are transformed, and where they re-emerge to interacting with the atmosphere; and identify the essential aspects of thermohaline circulation as well as the subsurface expressions of the patterns of climate variability; and 6) sea ice thickness and concentrations. These parameters represent the specific "outcomes" of the global ocean observing system for climate. The sampling requirements for these parameters have been documented by international GOOS and GCOS. Table 1 lists the requirements as presented at the international OCEANOBS 99 Conference in Saint-Raphael, France. It represents the best estimates of the international community at this time. A summary of the sampling requirements for the global occan, based largely on OOSDP (1995), but with revisions as appropriate. These are a statement of the required measurement network characteristics, not the characteristics of the derived field. The field estimates must factor in geophysical noise and unsampled signal. Some projections (largely unverified) have been included for GODAE. | | | Sampling 1 | Requirements | for the Gl | obal Ocean | | | |------|------------------------------------|---------------------------------|----------------------------------------------------------------------------|--------------------|------------------|----------|-----------------------------------------------------------------| | Code | Application | Variable | Hor. Res. | Vert. Res. | Time Res. | #samples | Accuracy | | Α | NWP, climate,<br>mesoscale ocean | Remote SST | 10 km | - | 6 hours | I | 0.1-0.3°C | | В | Bias correction,<br>trends | In situ SST | 500 km | - | l week | 25 | 0.2-0.5°C | | С | Climate variability | Sea surface<br>salinity | 200 km | - | 10 day | I | 0.1 | | D | Climate prediction and variability | Surface wind | 2" | - | 1-2 day | I-4 | 0.5-1 m/s in components | | E | Mesoscale, coastal | Surface wind | 50 km | - | 1 day | I | 1-2 m/s | | F | Climate | Heat flux | 2" x 5" | - | month | 50 | Net: 10 W/m <sup>2</sup> | | G | Climate | Precip. | 2° x 5° | - | daily | Several | 5 cm/month | | Н | Climate change<br>trends | Sea level | 30-50 gauges<br>+ GPS with<br>altimetry, or<br>several 100<br>gauges + GPS | - | monthly<br>means | | 1 cm, giving 0,<br>mm/yr accuracy<br>trends over 1-2<br>decades | | ı | Climate variability | Sea level<br>anomalies | 100-200 km | - | 10-30 days | ~ 10 | 2 cm | | J | Mesoscale variability | Sea level | 25-50 km | - | 2 days | 1 | 2-4 cm | | К | Climate, short-range prediction | | ~ 30 km | - | 1 day | ı | 10-30 km<br>2-5% | | L | Climate, short-range prediction | sea ice<br>velocity | ~ 200 km | - | Daily | 1 | ~ cm/s | | М | Climate | sea ice<br>volume,<br>thickness | 500 km | - | monthly | I | ~ 30 cm | | N | Climate | surface pCO <sub>2</sub> | 25-100 km | - | daily | I | 0.2-0.3 µatm | | () | ENSO prediction | T(z) | 1.5° x 15° | 15 m over 500<br>m | 5 days | 4 | 0.2°C | | Р | Climate variability | T(z) | 1.5° x 5° | ~ 5 vertical modes | 1 month | 1 | 0,2°C | | Q | Mesoscale ocean | T(z) | 50 km | ~ 5 modes | 10 days | 1 | 0.2°C | | R | Climate | S(z) | large-scale | ~ 30 m | monthly | 1 | 0.01 | | S | Climate, short-range | <u>U</u> (surface) | 600 km | - | - month | | 2 cm/s | | Т | Climate model valid. | <u>U</u> (z) | a few places | 30 m | monthly<br>means | 30 | 2 cm/s | Table 1. From *The Action Plan for GOOS/GCOS and Sustained Observation for CLIVAR* by Needler et al. -- *OCEANOBS 99* The Proceedings of OCEANOBS 99 and the final report from the conference, *Observing the Ocean in the 21st Century*, outline implementation strategies for achieving these sampling requirements. Additionally, for documenting sea level variability and change, the implementation strategy is further defined in the *International Sea Level Workshop Report*, 1998; and for documenting ocean carbon sources and sinks the implementation strategy is defined in the *Large Scale CO<sub>2</sub> Observing Plan: In* Situ Oceans and Atmosphere (LSCOP), 2002. The latter plan is for the United States only, but was developed by U.S. scientists working in collaboration with international partners. The international community met in Paris, January 2003, to advance international implementation of the ocean carbon monitoring system and the results have now been published in the *International Ocean Carbon Coordination Project*. The elements of the plans needed to achieve global coverage with an initial ocean observing system have now been detailed in GCOS-92. These foundation documents are available from the NOAA Office of Climate Observation and are listed in Appendix A. Based on the requirements in Table 1 and the implementation strategies defined in the foundation documents listed in Appendix A, the system's effectiveness in meeting the objectives will be gauged by the performance measure listed below. The goal is to reduce measurement errors to limits acceptable for documenting climate scale changes in the ocean. The reduction of measurement error depends directly on achieving complete global coverage by the *in situ* networks, in conjunction with continuous satellite missions. The present number of data buoys, floats, ships, and tide gauge stations is not adequate. Global coverage can be achieved only by deploying additional platforms to fill the gaps. The "outcome" performance measures detailed below will quantitatively demonstrate why 100% global coverage is necessary to adequately document climate variability and change in the ocean. At present, the performance measure for sea surface temperature is the only quantitative outcome measure available. The required accuracy is 0.2 degrees Celsius. The present ocean observing system can deliver only 0.6 degrees accuracy. During 2006 similar performance measures will be developed for tracking the errors in measurement of global sea level change, ocean carbon sources and sinks, and the ocean's heat storage. Together with the present sea surface temperature performance measure, these three new performance measures will provide a quantitative way to evaluate the effectiveness of the ocean observing system for delivering climate outcomes. In the mean time, percent of global coverage is the best way to estimate the requirement for deploying the ocean observing system. # **Performance Measures:** # **5.1 Sea Surface Temperature** - PM short tile: Reduce the error in global measurement of sea surface temperature. - Indicator: Potential satellite bias error. - Unit of Measure: Degrees Celsius - Baseline FY 2003: 0.7 degrees - FY 2008 target: 0.2 degrees - FY 2012 target: 0.2 degrees - Reporting Frequency: quarterly - Source of data: Office of Climate Observation - Who is the person reporting the PM: Mike Johnson - Approving Individual: Tom Karl - State of Development: PM well developed" Explanation: Sea surface temperature is the single most important ocean variable for determining the carbon, heat, and water cycles. Achieving an acceptable error target of 0.2 degrees as soon as possible is the number one priority of the ocean program. This target can be reached in FY 2008 with the existing budget. #### 5.2 Sea Level - PM short tile: Reduce the error in global measurement of sea level change. - Indicator: Difference between tide gauge measurements and satellite altimeter measurements of sea level trend. - Unit of Measure: cm/decade - Baseline FY 2005: 0.72 - FY 2008 target: 0.62 - FY 2010 target: 0.50 - Reporting Frequency: Quarterly - Source of data: Office of Climate Observation - Who is the person reporting the PM: Mike Johnson - Approving Individual: Tom Karl - State of Development: Experimental. Being further developed in FY 2006. Explanation: This new outcome-based performance measure will provide a quantifiable metric for evaluating the observing system's ability to deliver fundamental climate information. #### 5.3 Ocean Carbon - PM short tile: Reduce the error in global measurement of ocean carbon sources and sinks. - Indicator: TBD Unit of Measure: TBDBaseline FY 2003: TBDFY 2008 target: TBDFY 2012 target: TBD - Reporting Frequency: Quarterly - Source of data: Office of Climate Observation - Who is the person reporting the PM: Mike Johnson - Approving Individual: Tom Karl - State of Development: Being developed in FY 2006. Explanation: This new outcome-based performance measure will provide a quantifiable metric for evaluating the observing system's ability to deliver fundamental climate information. #### 5.4 Ocean Heat - PM short tile: Reduce the error in global measurement of ocean heat storage. - Indicator: Sampling error. - Unit of Measure: Joules/m<sup>2</sup>x10<sup>7</sup> Baseline FY 2005: 2.2FY 2008 target: 1.0FY 2012 target: 0.8 - Reporting Frequency: Quarterly Source of data: Office of Climate ObservationWho is the person reporting the PM: Mike Johnson - Approving Individual: Tom Karl - State of Development: Experimental. Being further developed in FY 2006. Explanation: This new outcome-based performance measure will provide a quantifiable metric for evaluating the observing system's ability to deliver fundamental climate information. #### 5.5 Deploy the global ocean observing system - PM short tile: Deployed global observing systems. - Indicator: Number of platforms in sustained service. - Unit of Measure: Percent of target number needed to achieve global coverage. Baseline FY 2003: 45%FY 2008 target: 68%FY 2012 target: 100% - Reporting Frequency: Quarterly - Source of data: Office of Climate Observation - Who is the person reporting the PM: Mike Johnson - Approving Individual: Tom Karl - State of Development: PM well developed. Explanation: The international target year for completion of the global system was 2010. NOAA cannot achieve its contribution to this target because the executable gap is only \$16.8 million per year (execution is limited by ability to augment implementation work with existing infrastructure). Consequently the target for completion has been shifted back two years to 2012. ## 5.6 Number of ocean state variables reported - PM short tile: Number of ocean climate state variables reported. - Indicator: Essential climate variables listed in the international GCOS Adequacy Report. - Unit of Measure: Variables analyzed in the annual State of the Climate reported in BAMS. Baseline FY 2003: 1FY 2008 target: 10FY 2012 target: 12 - Reporting Frequency: Annual - Source of data: Office of Climate Observation - Who is the person reporting the PM: Mike Johnson - Approving Individual: Tom Karl - State of Development: PM well developed" Explanation: All climate variables need to be analyzed routinely, with error bars, even before the observing system is completed sufficiently to reduce the measurement errors to acceptable limits. Consequently the target for this PM is to achieve regular reporting as soon as possible -- by 2009. # 5.7 Summary: 100% Budget Profile Performance Measures: | Performance Measure & Unit of Measure | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | |------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------| | Reduce the error in global<br>measurement of sea sur-<br>face temperature (degrees<br>Celsius) | 0.532 | 0.500 | 0.400 | 0.300 | 0.200 | 0.200 | 0.200 | 0.200 | | Reduce the error in global<br>measurement of sea level<br>change<br>(cm/decade) | 0.72 | 0.70 | 0.65 | 0.60 | 0.55 | 0.50 | 0.50 | 0.50 | | Reduce the error in global<br>measurement of ocean<br>carbon sources and sinks | TBD | Reduce the error in global measurement of ocean heat storage (Joules/m²x10 <sup>7</sup> ) | 2.2 | 2.0 | 1.5 | 1.0 | 0.8 | 0.8 | 0.8 | 0.8 | | Deployed global observing systems (percent complete) | 53 | 55 | 63 | 72 | 81 | 89 | 97 | 100 | | Number of ocean climate state variables reported | 6 | 6 | 6 | 10 | 12 | 12 | 12 | 12 | # **5.8 Performance Measure linkages to the Outcomes:** #### **Outcomes** | | Outcomes | | | | | | | | | | |----------------------------------------------------------------------------------|--------------|--------------|-----------------------|-----------------------|------------------------|------------|--|--|--|--| | Performance Measures | Sea<br>level | Ocean carbon | SST, surface currents | Air-sea ex-<br>change | Ocean heat & transport | Sea<br>ice | | | | | | Reduce the error in global<br>measurement of sea surface<br>temperature | | X | X | X | X | X | | | | | | Reduce the error in global<br>measurement of sea level<br>change | X | | | | X | | | | | | | Reduce the error in global<br>measurement of ocean car-<br>bon sources and sinks | | X | | | | | | | | | | Reduce the error in global<br>measurement of ocean heat<br>storage | X | | | | X | X | | | | | | Deployed global observing systems (percent complete) | X | X | X | X | X | X | | | | | | Number of ocean climate state variables reported | X | X | X | X | X | X | | | | | **5.9 System linkages to the Performance Measures:** The following sections indicate network improvements that work toward building the observing system as a whole. The ocean observing system is a composite of complementary networks, each one contributing its unique strengths; most serve multiple purposes. One of the primary goals of NOAA's Office of Climate Observation is to look for efficiencies to be gained by utilizing common platforms/sites/data infrastructure for several objectives in parallel. For these reasons it is difficult to assign the network components specifically to product lines on a one-to-one basis. In general, however, the network tasks described below will contribute to the deliverables as follows: **Performance Measures** | OUTPUT Capacity | SST | Sea<br>Level | Ocean<br>Carbon | Ocean<br>Heat | System<br>Percent | Variables<br>Reported | |----------------------------------|-----|--------------|-----------------|---------------|-------------------|-----------------------| | Tide Gauge Stations | | X | | | X | | | Drifting Buoy Array | X | X | X | X | X | | | Tropical Moored Buoy<br>Network | X | X | X | X | X | | | Ships of Opportunity | X | X | X | X | X | | | Argo Profiling Float<br>Array | | X | | X | X | | | Ocean Reference Stations | X | X | X | X | X | | | Ocean Carbon Net-<br>works | | | X | X | X | | | Arctic Observing System | X | X | | X | X | | | Data and Assimilation | X | X | X | X | X | | | Analysis and Product<br>Delivery | X | X | X | X | X | X | # **6.0 Milestones** In order to achieve the Performance Measures, the integrated ocean observing system will be completed according to the following schedule. The schedule is based on the initial design and projections of adequate funding. The milestones will be updated annually to reflect evolution of the design as knowledge and technology advance, and to reflect the realities of funding availability. | | FY04 | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | |--------------------|------|------|------|------|------|------|------|------|------| | System % Complete: | 48 | 55 | 57 | 59 | 72 | 81 | 89 | 97 | 100 | Although individual network priorities are described below, they must all go forward together as a system. For example, the global Argo array of profiling floats is a primary tool for documenting ocean heat content; yet deployment of the floats in the far corners of the ocean cannot be achieved without the ships-of-opportunity and dedicated ship time elements; and the Argo array cannot do its work without global over-flight by continued precision altimeter space missions; the Argo measurements must be continually calibrated by deep ocean measurements from the dedicated ships conducting the global ocean carbon inventory surveys; while the measurements taken by all networks will be rendered effective only through the data and assimilation subsystems. Priorities and milestones for the individual networks follow. For each network the several priority tasks are listed in tabular form. The bottom lines of the tables give the representative milestones that are shown graphically in Figure 2; representative milestones are used to simplify the graphic depiction of the phased implementation plan illustrated by Figure 2. Relative emphases in completing the several components of the observing system will depend on the relative priorities assigned to the network tasks in the context of the overall requirements of climate services. **6.1 Tide Gauge Network**: Tide gauges are necessary for accurately measuring long-term trends in sea level change and for calibration and validation of the measurements from satellite altimeters, which are assimilated into global climate models for predicting climate variability. Many tide stations need to be upgraded with modern technology. Permanent GPS receivers will be installed at a selected subset of stations, leading to a geocentrically located subset expansion from the present 43 GPS sites to 170 sites globally by 2010. These 170 climate reference stations will also be upgraded for realtime reporting, not only for climate monitoring, but also to support marine hazard warning (e.g., tsunami warning). In cooperation with international partners NOAA will maintain a global climate network of 290 tide gauges stations as the Global Sea Level Observing System (GLOSS) core network, including the subset noted above, for validation of satellite retrievals, validation of climate model results, documentation of seasonal to centennial variability in the El Nino Southern Oscillation, Indian Ocean and Asian-Australian monsoons, tropical Atlantic variability, North Atlantic Oscillation, North Pacific variability, high latitude circulation, western boundary currents, and circulation through narrow straits and chokepoints, and in support of navigation and other marine services. This task will contribute to climate services by providing the long term records needed to 1) document sea level change: 2) document heat uptake, transport, and release by the ocean (sea surface height contributes to the measurement of ocean heat content); and 3) document the ocean's overturning circulation (gradients of sea surface height across straights and choke-points are used to calculate large-scale ocean currents). | | | | | | | | | Internat | tional | | |-----------------------------------|------|--------------------|------|------|------|------|------|----------|--------|--| | | NOAA | NOAA Contributions | | | | | | | | | | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | | | | Operational GLOSS stations | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 290 | | | GPS installation | 14 | 14 | 16 | 26 | 46 | 66 | 76 | 86 | 170 | | | Real-time reporting (GCOS) | 32 | 42 | 55 | 66 | 80 | 85 | 86 | 86 | 170 | | | GPS data processing | | | X | X | X | X | X | X | X | | | Technology development | | | | | X | X | X | X | X | | | International real-time reporting | g 79 | 91 | 106 | 126 | 148 | 155 | 160 | 170 | 170 | | **6.2 Drifting Buoy Array:** Data sparse regions of the global ocean are a major source of uncertainty in the seasonal forecasts and are also a major uncertainty in the detection of long-term trends in global sea surface temperature, which in turn is an indicator of global change. Data gaps must be filled by surface drifting buoys to reduce these sources of error to acceptable limits. Standard global SST analyses are derived from satellite retrievals, but the satellite measurements must be continuously tuned using surface in situ measurements. The scientific design for the global drifting buoy array calls for 1250 buoys to be maintained world wide, spaced approximately 500 km apart in order to adequately tune the satellites measurements. The drifter array also provides the primary source of global ocean surface circulation measurements which are necessary to validate climate and ocean forecast models, and specially equipped "hurricane drifters" are now routinely air-dropped in the path of hurricanes approaching the U.S. coast in order to improved hurricane intensity and landfall predictions. NOAA, together with international partners, will extend the global SST/velocity drifting buoy array to data sparse regions while adding wind, pressure, salinity, and temperature profile measurement capabilities to serve short term forecasting as well as climate research, seasonal forecasting, and assessment of long term trends. This task will support climate services by providing measurements needed to 1) document heat uptake, transport, and release by the ocean; 2) document ocean carbon sources and sinks (sea surface temperature affects the rate of transfer of CO<sub>2</sub> between the ocean and atmosphere; 3) document the air-sea exchange of water and the ocean's overturning circulation, and 4) document sea level change by providing the sea surface atmospheric pressure measurements that are essential for calculating sea surface height from satellite altimeter measurements. | | | | | | | | | Internat | tional | |-------------------------------|------|---------|---------|------|------|------|------|----------|--------| | | NOAA | Contrib | outions | | | | | | Goal | | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | | | Operational buoys 1250 | 1040 | 1040 | 1040 | 1040 | 1040 | 1040 | 1040 | 1040 | | | Hurricane Drifters | 8 | 22 | 30 | 30 | 40 | 40 | 40 | 40 | 40 | | Add barometers | 210 | 185 | 240 | 240 | 350 | 350 | 350 | 350 | 700 | | Add salinity sensors | 15 | 15 | 60 | 110 | 200 | 300 | 300 | 300 | 300 | | Technology development | | | X | X | X | X | X | X | X | | International array size 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | | **6.3 Tropical Moored Buoy Network:** Most of the heat from the sun enters the ocean in the tropical/sub-tropical belt. The advanced understanding of the role of the tropics in forcing mid-latitude weather and climate was learned primarily through the observations of the tropical moored buoy array (TAO/TRITON) in the Pacific. A similar pilot array in the Atlantic basin (PIRATA) now offers the potential of even better understanding, improved forecasts, and improved ability to discern the causes of longer-term changes in the Oceans. In addition to monitoring the air-sea exchange of heat, the moored buoys provide platforms for supporting instrumentation to measure carbon dioxide and rain- fall in the tropics. The global tropical moored buoy network will be expanded from 82 to 119 stations by 2010 and will ultimately span all three oceans - Pacific, Atlantic, and Indian Ocean. This task will support climate services by providing both ocean and atmospheric observations to 1) document heat uptake, transport, and release by the ocean; 2) document carbon sources and sinks; and 3) document the air-sea exchange of fresh water. | | | | | | | | | Internat | ional | | |------------------------------|------|--------------------|------|------|------|------|------|----------|-------|--| | | NOAA | NOAA Contributions | | | | | | | | | | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | | | | Operational buoys | 55 | 55 | 55 | 65 | 75 | 90 | 90 | 90 | 119 | | | Research buoys | 17 | 22 | 28 | 14 | 15 | 0 | 0 | 0 | 0 | | | Indian Ocean expansion | 4 | 6 | 10 | 15 | 15 | 15 | 15 | 33 | 33 | | | Atlantic Ocean expansion | 3 | 6 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | | | Add salinity sensors | 10 | 60 | 65 | 65 | 75 | 90 | 90 | 90 | 119 | | | Add flux capability to buoys | | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 8 | | | Technology development | | X | X | X | X | X | X | X | X | | | International network size | 86 | 91 | 97 | 104 | 115 | 119 | 119 | 119 | 119 | | **6.4 Ships of Opportunity:** The global atmospheric and oceanic data from Ships of Opportunity (SOOP) have been the foundation for understanding long-term changes in marine climate and are essential input to climate and weather forecast models. Improved instrument accuracy, automated reporting, and improved information about how the observations were taken will greatly enhance the quality of these data, reducing both systematic and random errors. NOAA will improve meteorological measurement capabilities on the global SOOP fleet for improved marine weather and climate forecasting in general, and will concentrate on a specific subset of high accuracy SOOP lines to be frequently repeated and sampled at high resolution for systematic upper ocean and atmospheric measurement. This climate-specific subset will build to a designed global network of 51 lines by 2010 and will provide measurements of the upper ocean thermal structure, sea surface temperature and chemistry, and surface meteorology of high accuracy. Additionally, the SOOP fleet is the primary vehicle for deployment of the drifting arrays. This task will support climate services by providing ocean and atmosphere measurements needed to 1) document heat uptake, transport, and release by the ocean; and 2) document ocean carbon sources and sinks (carbon sampling instrumentation is detailed under a separate task below); and 3) document the air-sea exchange of water and the ocean's overturning circulation. | | 210 1 1 | G . 11 | | | | | | Internat | tional<br>Goal | |---------------------------|---------|--------------------|------|------|------|------|------|----------|----------------| | | NOAA | NOAA Contributions | | | | | | | | | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | | | High resolution lines | 12 | 12 | 15 | 18 | 21 | 21 | 21 | 21 | 26 | | Frequently repeated lines | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 25 | | Add flux/salinity HRX | 2 | 2 | 7 | 10 | 15 | 15 | 15 | 15 | 26 | | Auto-met package, VOSClim | 0 | 0 | 20 | 50 | 100 | 200 | 200 | 200 | 200 | | Technology development | | | | X | X | X | X | X | X | | International lines | 39 | 39 | 42 | 45 | 47 | 51 | 51 | 51 | 51 | **6.5** Argo array of profiling floats: The heat content of the upper 2000 meters of the world's oceans, and the transfer of that heat to and from the atmosphere, are variables central to the climate system. Global sea level change is directly related to the ocean's heat content – as the ocean's temperature rises the water expands and thus sea level rises. The Argo array of profiling floats is designed to provide essential broad-scale, basin-wide monitoring of the upper ocean heat content. Three thousand floats will be deployed worldwide by 2007. The U.S. contribution is approximately one-half of this international project. Glider technology will replace standard drifting Argo floats in the boundary currents and targeted deep circulation regions. This task will support climate services by providing measurements needed to 1) document heat uptake, transport, and release by the ocean; 2) document global sea level change, and 3) document the air-sea exchange of heat and water and the ocean's overturning circulation. | | | | | | | | | Internat | tional | |-------------------------------|------|--------------------|------|------|------|------|------|----------|--------| | | NOAA | NOAA Contributions | | | | | | | | | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | | | Operational Argo floats 2800 | 1140 | 1500 | 1500 | 1500 | 1500 | 1400 | 1400 | 1400 | | | Operational gliders | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 200 | | Research gliders | 3 | 5 | 10 | 20 | 50 | 0 | 0 | 0 | 0 | | Technology development | | | | X | X | X | X | X | X | | International array size 3000 | 2240 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | | #### **6.6 Ocean Reference Stations:** **6.6.1 Subtask 1:** NOAA, together with international partners, will implement a global network of ocean reference station moorings, expanding from the present six pilot stations to a permanent network of 21 (plus 8 within the tropical moored buoy network) by 2012. NSF's Ocean Observatories Initiative will provide a major piece of the infrastructure needed for this network, establishing high-capability re-locatable moored buoys in remote ocean locations. NOAA will maintain climate instrumentation aboard the NSF-supplied platforms. **6.6.2 Subtask 2:** Monitoring the transport within the ocean is a central element of documenting the overturning circulation of fresh water and heat and carbon uptake and release; heat and carbon generally are released to the atmosphere in regions of the ocean far distant from where they enter. Long-term monitoring of key choke points, such as the Indonesian through-flow, and of boundary currents along the continents, such as the Gulf Stream, must be established to measure the primary routes of ocean heat, carbon, and fresh water transport. Additionally, major boundary currents such as the California Current have a major impact on marine ecosystems; changing climate regimes in the ocean basins are reflected in changing boundary currents which in turn transfer the ocean climate's influence to fisheries and ecosystems. **6.6.3 Subtask 3:** Monitoring thermohaline circulation is a central element of documenting the ocean's overturning circulation and a critical need for helping scientists understand the role of the ocean in abrupt climate change. It is essential that the ocean observing system maintain watch at a few control points at critical locations. Key monitoring sites have been identified by an international team of scientists for deployment of long-term subsurface moored arrays and repeated temperature, salinity, and chemical tracer surveys from research vessels. NOAA will focus with Canadian partners on monitoring the Labrador Sea and upstream locations in Davis Strait and the Canadian Arctic Archipelago, while European partners will focus on the eastern north Atlantic. Additionally, to estimate the effect of Antarctic zone water on the global thermohaline circulation, NOAA will maintain time series moorings and repeat sections in the northwestern Weddell Sea, and will establish time series measurements in the Ross Sea. These locations are important to examine the variability of water mass transformation processes as they relate to climate variability in the Southern Ocean. **6.6.4 Summary**: These three subtasks will support climate services by providing ocean and atmosphere measurements needed to 1) document heat uptake, transport, and release by the ocean; 2) document ocean carbon sources and sinks (carbon sampling instrumentation is detailed under a separate task below; and 3) document the air-sea exchange of water and the ocean's overturning circulation. | | | | | | | | | Internat | ional | | |----------------------------------|------|--------------------|------|------|------|------|------|----------|-------|--| | | NOAA | NOAA Contributions | | | | | | | | | | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | | | | Operational flux moorings | 6 | 6 | 6 | 7 | 9 | 9 | 9 | 9 | 21 | | | Operational full depth stations | 3 | 3 | 3 | 3 | 5 | 10 | 10 | 10 | 45 | | | Operational transport stations | 2 | 3 | 6 | 6 | 6 | 7 | 7 | 7 | 10 | | | Pacific Raingauge (PACRAIN) | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | | | S. Hemisphere sections | 0 | 0 | 0 | 0 | 2 | 3 | 3 | 3 | 3 | | | Technology development | | X | X | X | X | X | X | X | X | | | International reference stations | 42 | 43 | 46 | 49 | 54 | 60 | 78 | 87 | 87 | | **6.7 Coastal Moorings:** Improved near shore measurements from moored buoys are critical to coastal forecasting as well as to linking the deep ocean to regional impacts of climate variability. The boundary currents along continental coastlines are major movers of the ocean's heat and fresh water (e.g., the Gulf Stream). Furthermore, the coastal regions are critical to the study of the role of the ocean in the intensification of storms, which are key to the global atmospheric transport of heat, momentum and water, and are a significant impact of climate on society. Coastal arrays are maintained by many nations making this a "global" network of "coastal" stations. A climate subset of NOAA's existing network will be improved by augmenting and upgrading the instrument suite to provide measurements of the upper ocean as well as the sea surface and surface meteorology. Ten of these moorings will serve as platforms-of-opportunity for the addition of carbon sampling instrumentation. This task will support climate services by providing ocean and atmosphere measurements needed to 1) document heat uptake, transport, and release by the ocean; 2) document ocean carbon sources and sinks (carbon sampling instrumentation is detailed under a separate task below); and 3) document the air-sea exchange of water. | | NOAA | Interna | tional<br>Goal | | | | | | | |-----------------------------------------------------|--------|---------|----------------|---------|---------|---------|---------|---------|----------| | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | | | Upgrade w/climate sensors<br>Technology development | 0<br>X | 1<br>X | 5<br>X | 10<br>X | 25<br>X | 45<br>X | 65<br>X | 65<br>X | 105<br>X | | International coastal network | 0 | 1 | 5 | 20 | 50 | 90 | 100 | 105 | 105 | **6.8 Ocean Carbon:** Understanding the global carbon cycle and the accurate measurement of the regional sources and sinks of carbon are of critical importance to international policy decision making as well as to forecasting long term trends in climate. Projections of long-term global climate change are closely linked to assumptions about feedback effects between the atmosphere, the land, and the ocean. To understand how carbon is cycled through the global climate system, ocean measurements are critical. NOAA will add autonomous carbon dioxide sampling to the moored arrays and the VOS fleet to analyze the seasonal variability in carbon exchange between the ocean and atmosphere, and in cooperation with NSF will implement a program of systematic global ocean surveys that will provide a complete carbon inventory once every ten years. The ships used to conduct the carbon inventory survey sample the complete ocean water column from top to bottom for temperature and salinity – these measurements are essential to calibrate the measurements from the Argo array. This task is co- ordinated with the Global Carbon Cycle program, is dependent on implementation of the ship lines and moored and drifting arrays, and will support climate services by providing measurements to: 1) document ocean carbon sources and sinks; and 2) document heat uptake, transport, and release by the ocean. | | NOAA | International Goal | | | | | | | | |-------------------------------|------|--------------------|------|------|------|------|------|------|------| | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | Gour | | Inventory lines per decade | 6 | 7 | 7 | 8 | 9 | 10 | 11 | 12 | 37 | | Time series moorings | 5 | 5 | 7 | 9 | 10 | 10 | 10 | 10 | 12 | | Coastal flux moorings | 0 | 1 | 1 | 1 | 6 | 11 | 11 | 11 | 29 | | Flux on ships of opportunity | 4 | 4 | 6 | 12 | 12 | 12 | 12 | 12 | 21 | | Technology development | | | | X | X | X | X | X | X | | International inventory lines | 15 | 17 | 20 | 23 | 28 | 31 | 34 | 37 | 37 | **6.9 Integrated Arctic Observing System:** Given the sensitivity of the Arctic environment to climate variability and change, it is in this region that early indications of the future progression of climate change are likely to be first detected. A program of sustained observations of this area is being conducted through dedicated and shared ship-based cruises, permanent oceanographic moorings and gliders, supplemented by acquisition and analysis of historical data sets. The long-term goal is to detect climate-driven physical and ecological change, especially due to changes in sea ice extent and duration, and in ocean density and circulation that together may lead to changes in ocean heat transport, productivity, and food web structure. International collaboration is essential for completing this program, especially with Russia and Canada. Ice-tethered buoys and bottom-mounted moorings are deployed to monitor the drift of Arctic sea ice and to determine its thickness. The long-term goal is to provide an accurate record of changes in sea ice thickness that, together with satellite observations of sea ice extent, can provide an estimate of changes in sea ice volume. This information is critical for improvement of global climate models and development of a regional Arctic climate model. This task will support climate services by providing ocean and ice measurements needed to document heat uptake, transport, and release by the ocean. | | | | | | | | | Internat | tional<br>Goal | | |-----------------------------|------|--------------------|------|------|------|------|------|----------|----------------|--| | | NOAA | NOAA Contributions | | | | | | | | | | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | | | | Arctic pathway moorings | 0 | 0 | 1 | 2 | 3 | 4 | 6 | 8 | 12 | | | Ice mass balance buoys | 3 | 3 | 4 | 5 | 5 | 6 | 8 | 8 | 11 | | | ASOF gateway mooring sets | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 4 | 8 | | | Automated drifting stations | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 3 | 3 | | | Ice buoys | 14 | 2 | 5 | 8 | 14 | 20 | 20 | 20 | 40 | | | Hydrographic stations | 1 | 1 | 2 | 4 | 7 | 9 | 10 | 10 | 16 | | | Bering Sea moorings | 1 | 1 | 1 | 1 | 4 | 4 | 6 | 6 | 6 | | | Western boundary sections | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | Western boundary moorings | 0 | 0 | 0 | 3 | 4 | 4 | 4 | 4 | 4 | | | Ice buoys and stations | 24 | 21 | 24 | 24 | 41 | 52 | 54 | 54 | 54 | | **6.10 Dedicated Ship Time:** Climate Ship time within the UNOLS research fleet for deployment of the moored and drifting arrays, and for deep ocean surveys is an essential component of this initiative. The deep ocean cannot be reached by SOOP and Argo; yet quantification of the carbon and heat content of the entire ocean column is needed to solve the climate equations. In addition to providing the survey and deployment platforms for the autonomous arrays, the research fleet will maintain sensor suites on a small core of vessels as the highest quality calibration points for validation of the other system measurements. Annual requirements for ship time are 54 days in addition to the Ka'imimoana for TAO/TRITON maintenance, 74 days for the carbon inventory, 34 days for PIRATA in addition to the French/Brazilian support (see Subtask 2), 47 days for ocean reference stations growing to 120 days, 60 days for deployment of the drifting arrays in remote regions, and 46 days for thermohaline circulation monitoring growing to 172 days. This task will support climate services by providing multi-use platforms for the ocean and atmosphere measurements needed to 1) document heat uptake, transport, and release by the ocean; 2) document ocean carbon sources and sinks; and 3) document the air-sea exchange of water and the ocean's overturning circulation. | | NOAA | Contrib | outions | | | | | Interna | tional<br>Goal | |------------------------------------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------| | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | Gour | | Ka'imimoana<br>TAO/TRITON additional<br>PIRATA | 240<br>45<br>0 | 240<br>45<br>35 240<br>90<br>125 | | Carbon survey | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 240 | | Coastal flux maps | 0 | 0 | 60 | 0 | 60 | 0 | 60 | 0 | 240 | | Reference Stations | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 480 | | Deployment of drifting arrays | 0 | 0 | 20 | 45 | 80 | 120 | 120 | 120 | 120 | | Thermohaline circulation | 26 | 26 | 33 | 33 | 33 | 33 | 85 | 79 | 340 | | Western Boundary Current | 30 | 30 | 44 | 24 | 30 | 44 | 24 | 30 | 30 | | Weddell Sea moorings | 4 | 4 | 4 | 4 | 20 | 20 | 20 | 20 | 20 | | Arctic hydrographic sections | 0 | 0 | 50 | 60 | 60 | 60 | 60 | 60 | 120 | | NOAA total | 458 | 472 | 496 | 659 | 831 | 882 | 882 | 882 | | | 2045 | | | | | | | | | | | NOAA contribution<br>1620 | 458 | 472 | 496 | 659 | 831 | 882 | 882 | 882 | | #### **6.11 Satellites:** The initial ocean observing system for climate depends on space based global measurements of 1) sea surface temperature, 2) sea surface height, 3) surface vector winds, 4) ocean color, and 5) sea ice. These satellite contributions are detailed in other NOAA program plans. **6.11.1 Sea surface temperature:** Satellite measurements of sea surface temperature are included in NOAA's operational satellite program and the NPOESS program. Satellite data provide highresolution sea surface temperature data. Both infrared and microwave satellite data are important. Microwave sea surface temperature data have a significant coverage advantage over infrared sea surface temperature data, because microwave data can be retrieved in cloud-covered regions while infrared cannot. However, microwave sea surface temperatures are at a much lower spatial resolution than infrared. In addition microwave sea surface temperatures cannot be obtained within roughly 50 km of land. A combination of both infrared and microwave data are needed because they have different coverage and error properties. Drifting buoy and other in situ data are critically important in providing calibration and validation in satellite data as well as providing bias correction of these data. Satellite biases can occur from orbit changes, satellite instrument changes and changes in physical assumptions on the physics of the atmosphere (e.g., through the addition of volcanic aerosols). Thus, drifting buoy and other in situ data are needed to correct for any of these changes. This task will support climate services by providing measurements needed to 1) document heat uptake, transport, and release by the ocean; and 2) document ocean carbon sources and sinks (sea surface temperature affects the rate of transfer of CO<sub>2</sub> between the ocean and atmosphere. - **6.11.2 Sea surface height:** The value of spaced-based altimeter measurements of sea surface height has now been clearly demonstrated by the TOPEX/Poseidon and Jason missions. Changes in sea level during major El Nino events can now be discerned at high resolution and provide realistic model initializations for seasonal climate forecasting. The same data, when calibrated with island tide gauge observations, are also able to monitor the rate of global sea level change with an accuracy of 1 mm per year. The planned NPOESS altimeter will be adequate for shorter term forecasting, but the NPO-ESS altimeter will not fly in the same orbit as TOPEX/Poseidon and Jason; and for monitoring longterm sea level change, continuation of precision altimeter missions in the TOPEX/Poseidon/Jason orbit is necessary. Jason follow-on altimeter missions (Ocean Surface Topography Mission, OSTM) are necessary to continue the long-term sea level record. NASA and CNES have asked NOAA and EUMETSAT to transition the Jason-class altimeter from research to operations beginning with the OSTM. In FY2006, NOAA will assume primary U.S. responsibility for continuing this international effort. This task will contribute to climate services by providing the long term records needed to 1) document sea level change; 2) document heat uptake, transport, and release by the ocean; and 3) document the ocean's overturning circulation (sea surface height contributes to the measurement of ocean heat and fresh water content and their transport). - **6.11.3 Surface vector winds, ocean color, and sea ice:** The best methods of sustaining satellite measurement of surface vector winds, ocean color, and sea ice are still a research and development question; over the next five years NOAA, NASA, and NPOESS will weigh the alternatives and determine the long term strategy for maintenance of these elements. # **6.12 Data and Assimilation Subsystems**: - **6.12.1 Subtask 1 Long Term Stewardship:** The value of the observations does not end with their initial use in detecting and forecasting climate variability. The data must be retained and made available for retrospective analyses to understand long-term climate change, and for designing observing system operations and improvements. NOAA's long history and unique expertise in environmental data management will be applied to the ocean observing system. NOAA also will include the vast holdings of historical ocean observations within the context of the integrated environmental data access and archive system. Support will also be provided for a World Ocean Database to incorporate modern data into an integrated profile system. - 6.12.2 Subtask 2 Data Management and Communications: A robust and scalable data management infrastructure is essential to the vision of a sustained ocean observing system. NOAA's ocean climate data element will contribute to the Data Management and Communications System (DMAC) of the U.S. Integrated Ocean Observing System (IOOS) that is being implemented by the National Oceanographic Partnership Program agencies. The DMAC plan integrates data transport, quality control, data assembly, limited product generation, metadata management, data archeology, data archival, data discovery, and administration functions. Uniform access to data will be addressed through the concept of "middleware" connectivity a common set of standards and protocols that connects all data sources to data users. The middleware approach shields end users from many of the traditional barriers that have been associated with climate data access, including file formats, the distributed location of data, and the large size of some data sets. The preliminary design has been developed by the National Virtual Ocean Data System (NVODS) project. The nature of IOOS requires the DMAC to be very highly distributed, supporting both large and small data providers at Federal, regional, state, municipal and academic levels. Data assembly centers will be built into the design to add fault-tolerance and increase ease of use. The GODAE server presently at Navy's Fleet Numerical Modeling Operations Center (FNMOC) in Monterey will provide robust, operational access to aggregated and quality-controlled real-time data streams and will be a primary assembly center for NOAA's real-time global measurements. Delayed-mode data sources will be distributed across many institutions including the Asia-Pacific Research Data Center (APDRC) (part of the International Pacific Research Center (IPRC) at the University of Hawaii) and the NOAA Data Centers. The APDRC will provide data assembly services for delayed-mode observations in a cooperative partnership with the GODAE Server. Historical data set serving is also an important function of the distributed system. The GODAE experimental period ends in 2007. The GODAE server system is central to the sustained integrated ocean observing system and the server functions that have been developed during GODAE must be continued. The NOPP agencies must be prepared to continue these functions either at Monterey or some other location. The Navy has not expressed interest in long-term support of the GODAE server and NOAA is presently planning to assume the leadership role in sustaining this critical part of the ocean observing system infrastructure. The Data Management and Communications component of NOAA's ocean climate observing system must also deliver the information products needed by NOAA scientists and managers for decision support. The products must provide the information needed to monitor the month-by-month effectiveness of the observing system and to diagnose problems. The products should include intelligible scientific graphics and human-readable numeric tables that provide an overview of the integrated system, selectively merging the data from all relevant measurement streams. These information products will be a component of NOAA's contribution to IOOS. 6.12.3 Subtask 3 – Four dimensional data assimilation including GODAE: For climate forecasting, the combined fields from many different networks are used as initial conditions to begin the forecast. These combined fields, or analyses, are also used to document what the ocean and atmosphere are doing at present and what they did in the past, thus providing a record of the changing climate. By routinely comparing models and data, shortcomings in the observing system can be identified and both the models and forecasts can be improved. To utilize effectively the ocean observations, NOAA will expand ocean analyses to the global domain and will develop and implement improved assimilation subsystems that can more effectively use the new data types that are being collected. The principal vehicle for developing this capability, involving both national and international communities and producing a variety of marine products in addition to the use of these observations in forecast systems, is the Global Ocean Data Assimilation Experiment (GODAE). The global data and ocean product delivery will be operationalized as a contribution to, and continue as a follow-on to, GODAE through the interagency/international server infrastructure being implemented by GODAE; NOAA will provide the primary U.S. support to sustain the server infrastructure over the long term. In addition to improving initializations for seasonal forecasting at NCEP, NOAA will implement sustained ocean data assimilation activities at GFDL to enable experimental decadal forecasts, provide ocean initial conditions for IPCC type scenarios, monitor ocean heat uptake, monitor the thermohaline circulation for abrupt changes, and develop a capability for monitoring changes in oceanic carbon sources and sinks. **6.12.4 Summary:** This task will support climate services by providing the integrating data, synthesis, and analysis infrastructure for the ocean and atmosphere measurements, both *in situ* and space based, needed to: 1) document long-term trends in sea level change; 2) document heat uptake, transport, and release by the ocean; 3) document ocean carbon sources and sinks; and 3) document the airsea exchange of water and the ocean's overturning circulation. | | NOAA | . Contrib | outions | | | | | Interna | tional<br>Goal | |----------------------------|------|-----------|---------|------|------|------|------|---------|----------------| | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | | | Data set development | X | X | X | X | X | X | X | X | X | | World Ocean Database | | | X | X | X | X | X | X | X | | Standards and protocols | | | X | X | X | X | X | X | X | | Systems interoperability | X | X | X | X | X | X | X | X | X | | Automated monitoring tools | X | X | X | X | X | X | X | X | X | | IPRC server | X | X | X | X | X | X | X | X | X | |-------------------------------|---|---|---|---|---|---|---|---|---| | GODAE pilot activities (JIMO) | X | X | X | X | X | X | X | X | X | | Operationalize GODAE pilot | | | | | X | X | X | X | X | | Sustain GODAE server | | | X | X | X | X | X | X | X | | Argos data processing | X | X | X | X | X | X | X | X | X | # 7.0 Management Plan – System organization and product delivery A global effort of the proposed magnitude must be integrated, organized, and managed as a system in order to be effective. Matrix management is NOAA's corporate business practice and standard protocol. This management plan will follow that protocol by capitalizing on the capabilities that presently exist across the agency while building toward the vision of a single composite system. Implementation of the individual *in situ* networks will continue to be through distributed centers of expertise at the NOAA Research laboratories, the National Ocean Service Center for Operational Oceanographic Products and Services, the National Data Buoy Center, and the university laboratories that have developed the instruments and techniques. The space components and data management will be centered in the NOAA Environmental Satellite, Data and Information Service. The focal point for developing global ocean data assimilation capabilities will be the Geophysical Fluid Dynamics Laboratory in partnership with the National Centers for Environmental Prediction and university-based applied research centers. To weld the distributed efforts together into the single vision, NOAA has established the Office of Climate Observation (OCO) under the auspices of the NOAA Climate Program Office. OCO is charged with advancing NOAA's multi-year program plan for *Building a Sustained Ocean Observing System for Climate*. The OCO is a hybrid combining the functions of a traditional program office with the functions of a center for system monitoring, evaluation, integration, and action. The individual network managers will continue to monitor and evaluate the performance of their individual networks, while the OCO will build the capability to monitor and evaluate the performance of the system as a whole, and take action to evolve the *in situ* networks for overall effectiveness and efficiency in meeting climate observation objectives. The OCO is the management focus for the distributed ocean network operations and, utilizing the NOAA Observing System Architecture, establishes and maintains operational linkages between the networks and NOAA's other *in situ* and satellite elements and the data and modeling activities that are essential components of climate observation. The office provides a central point of contact within NOAA for coordination with the other agencies and nations involved in observing system implementation. The office receives and acts on feedback from the observing system customers - the operational forecast centers, international research programs, and major scientific assessments. - **7.1 Subtask 1 System Monitoring:** The OCO monitors the status of the globally distributed networks to anticipate gaps and overlaps in their combined capabilities. Real-time reports from all platforms are being centralized so that up-to-date status can be displayed at all times. The office is working to report system statistics and metrics, routinely and on demand. - **7.2 Subtask 2 Evaluation:** An team of expert scientists both internal and external to NOAA is being established to continually evaluate the effectiveness of the networks in meeting the performance measures and the adequacy of the deliverables in meeting the system objectives. The team of experts will evaluate analysis/synthesis products, recommend product improvements, recommend where additional sampling is needed or redundancies are not needed, recommend better utilization of existing and new *in situ* and satellite data, and assess the impacts of proposed changes to the system. - 7.3 Subtask 3 Take action to evolve the *in site* systems: System monitoring and evaluation will be useless unless there is responsive action taken to build the system, fix problems, and improve sampling strategies. Decisions must be made to implement the best solutions to conflicting requirements (multiple partners and customers have differing missions and will inevitably have differing requirements), to re-deploy existing resources to best improve the system, to select the highest priorities for system extensions and funding of new ideas, and to agree on quid pro quo with interagency and international partners. The OCO is charged with advancing NOAA's multi-year program plan and with evolving the system for maximum effectiveness and efficiency along the way. - **7.4 Subtask 4 Intra-agency, Interagency, and International Coordination**: National and international coordination is essential to success in building the global ocean observing system for climate. The OCO is charged with building the infrastructure necessary to organize NOAA's ocean observing efforts along three axes 1) climate services, 2) the U.S. Integrated Ocean Observing System, and 3) international implementation. - 1) For climate services the ocean observations must be available to be combined with data from the atmospheric networks, land surface networks, and cryosphere networks. The requirements from the three user communities the forecast centers, research programs, and scientific assessments must be received and synthesized into common requirements or prioritized if they do not resolve readily. - 2) For the U.S. Integrated Ocean Observing System, NOAA's climate system will make a significant contribution to the global component where like data from the various platforms, *in situ* and space-based, must be combined to form complete fields (e.g., sea surface temperature from ships, drifting and moored buoys, and satellites). NOAA's efforts must be combined with the efforts of the other NOPP agencies into a seamless system. - 3) For international implementation NOAA must work with the implementation panels of the Joint IOC/WMO Commission for Oceanography and Marine Meteorology (JCOMM) to ensure that consistent standards and formats are used by all participating nations so that data can be easily shared and that consistent quality can be expected from all platforms regardless of their national origin. In addition to dedicated infrastructure needed for NOAA to operate an office for climate observation, dedicated infrastructure is also needed for operation of the interagency and intergovernmental planning and implementation coordination organizations. These interagency/international organizations rely on funding from the member agencies for their support. NOAA has historically provided a significant portion of the funding needed to maintain the existing international secretariats, science and implementation panels, and capacity building efforts of GOOS, GCOS, and the JCOMM. This funding support has been ad hock and in general from the research programs. As a central component of sustaining the long-term, operational global climate observing system, support for the national/international coordination/implementation infrastructure will be institutionalized via the OCO. **7.5 Subtask 5 – Annual Report on the Ocean's Role in Climate:** The organizing framework to bring the multiple elements of the composite ocean observing system together is the routine delivery of an *Annual Report on the State of the Ocean and the Ocean Observing System for Climate.* The National Climate Change Science Program strategic plan has identified the critical need for regular reports documenting the present state of the climate system components. NOAA's Office of Climate Observation is leading the national effort to develop this reporting for the ocean component. The theme of the report is the CCSP overarching question for guiding climate observations and monitoring-"What is the current state of the climate, how does it compare with the past, and how can observations be improved to better initialize and validate models for prediction or long term projections?" The annual report synthesizes satellite and *in situ* observations integrated with models and provides the products to decision makers, the science community, and the public. This reporting framework also establishes a formal mechanism for implementing a "user-driven" observing system and for reporting on the system's performance in meeting the requirements of the operational forecast centers, international research programs, and major scientific assessments. Stakeholders are invited to provide formal recommendations for system improvement and evolution as part of the annual report process. The annual report contains four chapters: Chapter One describes The Role of the Ocean in Climate and includes a description of ENSO, SST, sea ice, and sea level, and the various demands on the system incorporating seasonal, interannual, decadal, and climate change time scales. This chapter sets the context for the report and outlines common themes, including the significance of the global ocean observing system and the demands on the system. The second chapter documents the State of the Ocean. The target audience is decision makers and non-scientists. This chapter is written by the experts in the field and is an annually updated climatology of the ocean, placed in historical context, with discussion of the present uncertainties and with pointers to products of greater detail and climate applications. The third chapter documents the State of the Observing System. The target audience is NOAA management. This chapter has two sections: - a) System Progress in meeting milestones is documented by the network managers for their projects and by the OCO for the system in total. Annual statistics and status are given. - b) Work plans for the next fiscal year include future efforts. Chapter Four recaps the State of the Science. The target audience is scientists. The final chapter of the report contains a bibliography of refereed publications from scientific journals treating the global observation of ocean heat, carbon, fresh water, and sea level change. Each year a selected number of abstracts of particularly relevant scientific papers are published with the report. **7.6 Subtask 6 – External Review:** The execution of this plan will be subject to normal management review in accordance with NOAA's Requirements-Based Management Process. Additionally, for specific programmatic advice and guidance, the Climate Observing System Council (COSC) has been established to review the program's contribution to the international Global Climate Observing System and to recommend effective ways for the program to respond to the long-term observational needs of the operational forecast centers, international research programs, and major scientific assessments. The Council is comprised of members both internal and external to NOAA who individually offer their expert advice; the Council is not expected to develop consensus opinions. The term of membership is two years with a renewal option for two additional terms. The Council meets at least annually to: - Advise the OCO on priorities for sustaining and enhancing components of the global climate observing system. - Review the accomplishments and future plans of specific program activities. - Recommend realignment of activities, or entirely new activities, within the program as appropriate to satisfy the evolving requirements for climate observation. - Bring to the OCO a broad view on national and international climate research and operational activities and their implications. - Provide coordinating linkages with national and international programs requiring and/or contributing to the implementation of the global climate observing system. - Advise the OCO on the balance of activities within the program in the context of NOAA's overarching climate service requirements, of other national and international requirements, and of other national and international contributions to the global climate observing system. # 7.7 System management and product delivery milestones: | | NOAA | . Contrib | utions | | | | | Internat | tional<br>Goal | |----------------------------------|--------------|-----------|--------|------|------|------|------|----------|----------------| | | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | Goai | | System Monitoring | X | X | X | X | X | X | X | X | X | | System Evaluation: | | | | | | | | | | | Sea level change | | X | X | X | X | X | X | X | X | | Carbon sources and sinks | | X | X | X | X | X | X | X | X | | Air-sea exchange,heat/water | X | X | X | X | X | X | X | X | X | | Heat storage/circulation | | X | X | X | X | X | X | X | X | | Interagency/International panels | $\mathbf{X}$ | X | X | X | X | X | X | X | X | | International capacity building | | | | X | X | X | X | X | X | | | X | X | X | X | X | X | X | X | X | | Mgmt, administration & finance | eX | X | X | X | X | X | X | X | | | Annual Report | X | X | X | X | X | X | X | X | | | External review | X | X | X | X | X | X | X | X | | # 7.8 Education: The NOAA Office of Climate Observation sponsors two educational initiatives: - 1) Teacher at Sea Program OCO sponsors one or two teachers each year to participate in ocean observing system research and implementation on board NOAA and other research vessels. - 2) Adopt a Drifter Program OCO established this program in December 2004 to enable K-16 teachers and their students to adopt a drifting buoy by partnering with an international school. They can follow their buoy's movement across the ocean by using OCO's Adopt a Drifter website. # Appendix A #### **Foundation Documents** *Observing the Oceans in the 21st Century*, edited by Chester J. Koblinsky and Neville R. Smith, 2001, GODAE Project Office, Bureau of Meteorology, Melbourne, Australia, ISBN 0642 70618 2. *OCEANOBS 99*, proceedings of the International Conference on the Ocean Observing System for Climate, GCOS/GOOS/WCRP Ocean Observations Panel for Climate and the CLIVAR Upper Ocean Panel, Saint-Raphael, France, October 1999. *International Sea Level Workshop Report*, GCOS/GOOS/WCRP Ocean Observations Panel for Climate and the CLIVAR Upper Ocean Panel, April 1998, GCOS #43, GOOS #55, ICPO #16. A Large Scale CO<sub>2</sub> Observing Plan: In Situ Oceans and Atmosphere (LSCOP), a contribution to the implementation of the U.S. Carbon Cycle Science Plan by the *In situ* Large-Scale CO<sub>2</sub> Observations Working Group, April 2002. Implementation Plan for the Global Observing System for Climate in support of the UNFCCC (GCOS-92), the Global Climate Observing System, October 2004, GCOS #92, WMO/TD #1219.